A Q-star, also known as a grey hole, is a hypothetical type of a compact, heavy neutron star with an exotic state of matter. Such a star can be smaller than the progenitor star's Schwarzschild radius and have a gravitational pull so strong that some light, but not all light, cannot escape.
The short answer, unfortunately, is no. White holes are really just something scientists have imagined — they could exist, but we've never seen one, or even seen clues that one may exist. For now, they are an idea.
White holes are theoretical cosmic regions that function in the opposite way to black holes. Just as nothing can escape a black hole, nothing can enter a white hole. White holes were long thought to be a figment of general relativity born from the same equations as their collapsed star brethren, black holes.
Grey holes have a strange force of combined gravity and antigravity called the Strange Force that increases the volume of any object around it as in spreading out even the most basic of sub-preon particles, making it impossible to touch them with any technologies or phenomenon known to even some of the highest ...
Black hole attack is type of routing attack and can bring harm to whole network. Grey hole attack is the kind of denial of service attack. In this attack, the router which is mesh behave just not well and a subset of packets are forward and handle by receiver but leave by others.
At first we thought that these things were normal blue black holes hidden behind clouds of interstellar dust, that absorbed the blue light and made them appear pink. It turns out that this is only true for a few of them: most have the wrong colours to be expained by this.
Astronomers generally divide black holes into three categories according to their mass: stellar-mass, supermassive, and intermediate-mass.
In general relativity, a white hole is a hypothetical region of spacetime and singularity that cannot be entered from the outside, although energy-matter, light and information can escape from it. In this sense, it is the reverse of a black hole, from which energy-matter, light and information cannot escape.
A black hole is a region which nothing may ever escape, only enter. A white hole is a region which nothing may ever enter, only escape from. Thus, if the two were to collide, the white hole would enter the black hole, becoming part of it from an outside perspective.
red hole definition, red hole meaning | English dictionary
6 (U.S.) informal a small anchorage. 7 a fault (esp. in the phrase pick holes in)
While researchers have never found a wormhole in our universe, scientists often see wormholes described in the solutions to important physics equations. Most prominently, the solutions to the equations behind Einstein's theory of space-time and general relativity include wormholes.
Wormholes are a classic trope of science fiction in popular media, if only because they provide such a handy futuristic plot device to avoid the issue of violating relativity with faster-than-light travel. In reality, they are purely theoretical.
A wormhole is like a tunnel between two distant points in our universe that cuts the travel time from one point to the other. Instead of traveling for many millions of years from one galaxy to another, under the right conditions one could theoretically use a wormhole to cut the travel time down to hours or minutes.
As black holes evaporate, they get smaller and smaller and their event horizons get uncomfortably close to the central singularities. In the final moments of black holes' lives, the gravity becomes too strong, and the black holes become too small, for us to properly describe them with our current knowledge.
Logically, these giant black holes—each millions to billions of times heavier than our sun—must collide and merge, too. Such mergers can channel huge volumes of material into the black holes, sparking violent astrophysical outbursts that shape star formation and other processes in their host galaxies.
Our galaxy's supersized black hole, Sagittarius A*, as seen by the Event Horizon Telescope. It contains the equivalent mass of 4.3 million Suns and lies about 26,000 light-years away.
There are no classes of object in our Universe more extreme than black holes. With so much mass present in such a tiny volume of space, they create a region around them where the curvature of space is so strong that nothing — not even light — can escape from its gravity once a certain boundary is crossed.
If our Sun was suddenly replaced with a black hole of the same mass, Earth's orbit around the Sun would be unchanged. Of course, Earth's temperature would change, and there would be no solar wind or solar magnetic storms affecting us.
Astronomers have discovered the closest black hole to Earth, the first unambiguous detection of a dormant stellar-mass black hole in the Milky Way. Its close proximity to Earth, a mere 1,600 light-years away, offers an intriguing target of study to advance understanding of the evolution of binary systems.
Theoretically, if you were to approach a white hole in a spacecraft, you would be inundated by a colossal amount of energy, which would most likely destroy your ship. Even if your spaceship could withstand gamma rays, light itself would start slowing you down like air resistance slowing down a moving vehicle on Earth.
Don't let the name fool you: a black hole is anything but empty space. Rather, it is a great amount of matter packed into a very small area - think of a star ten times more massive than the Sun squeezed into a sphere approximately the diameter of New York City.
Intermediate-mass black holes — which, theoretically, range from 100 to 100,000 times the sun's mass — are the most elusive black holes in the universe. While there have been several promising candidates, no intermediate-mass black holes have been definitively confirmed to exist.
Anything outside this surface —including astronauts, rockets, or light—can escape from the black hole. But once this surface is crossed, nothing can escape, regardless of its speed, because of the strong gravitational pull toward the center of the black hole.
Absolute zero exists in black holes. A black hole is a region of space in which the gravitational field is so powerful that nothing, including electromagnetic radiation such as visible light, can escape its pull―a kind of bottomless pit in space-time.