Nothing like it has ever been seen before, but it was captured accidentally by NASA's
An ultramassive black hole about 30bn times the mass of the Sun has been discovered by astronomers in the UK. Scientists at Durham University said the gargantuan black hole was one of the biggest ever found.
“Direct measurements, many made with the help of the Hubble Space Telescope, confirm the presence of more than 100 supermassive black holes,” said Jeremy Schnittman, a theorist at NASA's Goddard Space Flight Center in Greenbelt, Maryland.
Solitary black holes can generally only be detected by measuring their gravitational distortion of the light from more distant objects. Gaia BH1 was discovered on 13 June 2022 by Tineke Roegiers. Gaia BH1 is 1,560 light-years away from Earth in the direction of the constellation Ophiuchus.
40,000,000,000,000,000,000. With a new computational approach, SISSA researchers have been able to make the fascinating calculation. Moreover, according to their work, around 1% of the overall ordinary (baryonic) matter is locked up in stellar mass black holes.
The possibility that a black hole could actually impact Earth may seem straight out of science fiction, but the reality is that microscopic primordial black holes could actually hit Earth. If one did, it wouldn't just impact like an asteroid, it'd pass straight through the entire Earth and exit the other side.
For all practical purposes the matter has disappeared from the universe. Once inside the black hole's event horizon, matter will be torn apart into its smallest subatomic components and eventually be squeezed into the singularity.
Wormholes are a classic trope of science fiction in popular media, if only because they provide such a handy futuristic plot device to avoid the issue of violating relativity with faster-than-light travel. In reality, they are purely theoretical.
White holes cannot exist, since they violate the second law of thermodynamics. General Relativity is time symmetric.
Humans could survive a trip through a wormhole, but there's a catch. There are drawbacks to this method — namely, such wormholes would be only microscopic, which means even the most hardcore exercise routine wouldn't make humans thin enough for the trip.
They, too, are a possible outcome of Einstein's theory. However, no one has ever observed a wormhole, let alone passed through one.
Near a black hole, the slowing of time is extreme. From the viewpoint of an observer outside the black hole, time stops. For example, an object falling into the hole would appear frozen in time at the edge of the hole.
Black holes are dark, dense regions in space where the pull of gravity is so strong that nothing can escape. Not even light can get out of these regions. That is why we cannot see black holes—they are invisible to our eyes. Because nothing can get out of black holes, physicists struggle understanding these objects.
Is it possible for a black hole to "eat" an entire galaxy? No. There is no way a black hole would eat an entire galaxy. The gravitational reach of supermassive black holes contained in the middle of galaxies is large, but not nearly large enough for eating the whole galaxy.
New black hole simulations that incorporate quantum gravity indicate that when a black hole dies, it produces a gravitational shock wave that radiates information, a finding that could solve the information paradox. Perhaps the most enigmatic objects in the Universe, black holes embody many unsolved paradoxes.
Death by black hole
Of course, no matter what type of black hole you plunge into, you're ultimately going to get torn apart by its extreme gravity and die a horrible death. No material that falls inside a black hole could survive intact.
Contrary to popular belief, the Solar System would not be sucked in: a solar-mass black hole would exert no more gravitational pull than our Sun. As this computer simulation shows, the planets would actually continue on in their orbits as if nothing had happened.
Stellar black holes are very cold: they have a temperature of nearly absolute zero – which is zero Kelvin, or −273.15 degrees Celsius. Supermassive black holes are even colder. But a black hole's event horizon is incredibly hot. The gas being pulled rapidly into a black hole can reach millions of degrees.
The singularity at the center of a black hole is the ultimate no man's land: a place where matter is compressed down to an infinitely tiny point, and all conceptions of time and space completely break down. And it doesn't really exist. Something has to replace the singularity, but we're not exactly sure what.
on edge of Black Hole. Space and time are intertwined, called space-time, and gravity has the ability to stretch space-time. Objects with a large mass will be able to stretch space-time to the point where our perception of it changes, known as time dilation.
Even if we see the universe from a point very close to the apparent event horizon, the time dilates to such an extent that the time of the locations away from tne universe will be much faster (say 1 second for the observer near blak hole will be 100000 years for an observer on earth).
At the center of a black hole the gravity is so strong that, according to general relativity, space-time becomes so extremely curved that ultimately the curvature becomes infinite. This results in space-time having a jagged edge, beyond which physics no longer exists -- the singularity.
There's nothing on the other side.
Don't let the name fool you: a black hole is anything but empty space. Rather, it is a great amount of matter packed into a very small area - think of a star ten times more massive than the Sun squeezed into a sphere approximately the diameter of New York City.