Eventually, the entire contents of the universe will be crushed together into an impossibly tiny space – a singularity, like a reverse Big Bang. Different scientists give different estimates of when this contraction phase might begin. It could be billions of years away yet.
The ultimate fate of an open universe is either universal heat death, a "Big Freeze" (not to be confused with heat death, despite seemingly similar name interpretation ; see §Theories about the end of the universe below), or a "Big Rip" – in particular dark energy, quintessence, and the Big Rip scenario – where the ...
Big Freeze, Big Rip, Big Crunch, Bounce or vacuum decay? Steven Strogatz speaks with theoretical cosmologist Katie Mack about the five ways that scientists think the universe could come to an end.
Although the end of the universe as we know it is still very uncertain, there are four theories that aim to put us closer to understanding this aforementioned inconceivable concept: a heat death, The Big Crunch, The Big Rip, and vacuum decay.
22 billion years in the future is the earliest possible end of the Universe in the Big Rip scenario, assuming a model of dark energy with w = −1.5. False vacuum decay may occur in 20 to 30 billion years if the Higgs field is metastable.
The universe will get smaller and smaller, galaxies will collide with each other, and all the matter in the universe will be scrunched up together. When the universe will once again be squeezed into an infinitely small space, time will end.
According to our best models of the evolution of the universe, the most likely scenario is what's called the Big Freeze. If dark energy keeps accelerating the expansion of the universe forever – and calculations suggest that it will – then the cosmos is in for a slow death that's drawn out for a googol years.
Astronomers once thought the universe could collapse in a Big Crunch. Now most agree it will end with a Big Freeze.
The trite answer is that both space and time were created at the big bang about 14 billion years ago, so there is nothing beyond the universe. However, much of the universe exists beyond the observable universe, which is maybe about 90 billion light years across.
If dark energy remains unchanging, space will expand indefinitely while increasingly isolated stars will slowly fade away and go cold, a phenomenon referred to as Heat Death. And if dark energy keeps accelerating the expansion of the universe, space itself will eventually be torn apart in the Big Rip.
Because space isn't curved they will never meet or drift away from each other. A flat universe could be infinite: imagine a 2D piece of paper that stretches out forever. But it could also be finite: imagine taking a piece of paper, making a cylinder and joining the ends to make a torus (doughnut) shape.
Scientists now consider it unlikely the universe has an end – a region where the galaxies stop or where there would be a barrier of some kind marking the end of space.
In the very final moments, objects held together by atomic and molecular forces will be ripped apart, electrons will be stripped from their atoms, atomic nuclei will be broken apart, and even quarks themselves will be separated from one another. If there are anything comprising quarks, they'll be ripped apart, too.
In physical cosmology, the Big Rip is a theory which describes the ultimate fate of the universe. According to this theory, everything in the universe, even spacetime itself will be torn apart by the expansion of the universe until distances between particles will become infinite.
As it stands, the universe is the largest object that we are aware of. There is nothing larger, and everything we can smell, hear, taste, touch, or see is a part of it.
The world as we know it has three dimensions of space—length, width and depth—and one dimension of time. But there's the mind-bending possibility that many more dimensions exist out there. According to string theory, one of the leading physics model of the last half century, the universe operates with 10 dimensions.
As a universe, a vast collection of animate and inanimate objects, time is infinite. Even if there was a beginning, and there might be a big bang end, it won't really be an end. The energy left behind will become something else; the end will be a beginning.
Today this is largely carried out in the context of the ΛCDM model, where the universe is assumed to contain normal (baryonic) matter, cold dark matter, radiation (including both photons and neutrinos), and a cosmological constant. and. , are the most important. 14.5 billion years.
Authors' example. In their paper, the authors consider a hypothetical example with w = −1.5, H0 = 70 km/s/Mpc, and Ωm = 0.3, in which case the Big Rip would happen approximately 22 billion years from the present.
"There was actually another universe existing before the present one and the Big Bang merely marked the end of that universe. Evidence of that previous universe can still be observed these days," he said.
We currently have no evidence that multiverses exists, and everything we can see suggests there is just one universe — our own.
Even though certain features of the universe seem to require the existence of a multiverse, nothing has been directly observed that suggests it actually exists. So far, the evidence supporting the idea of a multiverse is purely theoretical, and in some cases, philosophical.
According to NASA, time travel is possible, just not in the way you might expect. Albert Einstein's theory of relativity says time and motion are relative to each other, and nothing can go faster than the speed of light, which is 186,000 miles per second. Time travel happens through what's called “time dilation.”
It is impossible to destroy and create matter. Thus, everything that has existed still exists, and everything that will exist already exists, just not in the state(s) it did or is going to. And even if time is infinite you would not be born again.
In order for you to stop time, you would have to be traveling infinitely fast. Nothing can travel faster than light (let alone infinitely fast) without gaining infinite mass and energy, according to Einstein's theory of relativity.