Outer space is not completely empty; it is a near-perfect vacuum containing a low density of particles, predominantly a plasma of hydrogen and helium as well as electromagnetic radiation, magnetic fields, neutrinos, dust, and cosmic rays.
The Universe is thought to consist of three types of substance: normal matter, 'dark matter' and 'dark energy'. Normal matter consists of the atoms that make up stars, planets, human beings and every other visible object in the Universe.
The universe is everything. It includes all of space, and all the matter and energy that space contains. It even includes time itself and, of course, it includes you.
Practically, we cannot even imagine thinking of the end of space. It is a void where the multiverses lie. Our universe alone is expanding in every direction and covering billions of kilometres within seconds. There is infinite space where such universes roam and there is actually no end.
Above the Earth's atmosphere, outer space dims even further, fading to an inky pitch-black. And yet even there, space isn't absolutely black. The universe has a suffused feeble glimmer from innumerable distant stars and galaxies.
Black holes are the darkest things in our universe because they emit no light whatsoever in any wavelength.
Other astronauts have described it in similar yet varying ways: "burning metal," "a distinct odor of ozone, an acrid smell," "walnuts and brake pads," "gunpowder" and even "burnt almond cookie." Much like all wine connoisseurs smell something a bit different in the bottle, astronaut reports differ slightly in their " ...
Because space isn't curved they will never meet or drift away from each other. A flat universe could be infinite: imagine a 2D piece of paper that stretches out forever. But it could also be finite: imagine taking a piece of paper, making a cylinder and joining the ends to make a torus (doughnut) shape.
We can't smell space directly, because our noses don't work in a vacuum. But astronauts aboard the ISS have reported that they notice a metallic aroma – like the smell of welding fumes – on the surface of their spacesuits once the airlock has re-pressurised.
The trite answer is that both space and time were created at the big bang about 14 billion years ago, so there is nothing beyond the universe. However, much of the universe exists beyond the observable universe, which is maybe about 90 billion light years across.
As it stands, the universe is the largest object that we are aware of. There is nothing larger, and everything we can smell, hear, taste, touch, or see is a part of it.
Physicists tell us that there is no such thing as empty space. Imagine that you have removed every atom from a small box to try to make a perfect vacuum inside. That would be difficult but not impossible.
In cosmology, galaxy filaments are the largest known structures in the universe, consisting of walls of gravitationally bound galactic superclusters. These massive, thread-like formations can reach 80 megaparsecs h−1 (or of the order of 160 to 260 million light-years) and form the boundaries between voids.
Space is not empty. A point in outer space is filled with gas, dust, a wind of charged particles from the stars, light from stars, cosmic rays, radiation left over from the Big Bang, gravity, electric and magnetic fields, and neutrinos from nuclear reactions.
The Universe has not existed forever. It was born. Around 13.82 billion years ago, matter, energy, space – and time – erupted into being in a fireball called the Big Bang. It expanded and, from the cooling debris, there congealed galaxies – islands of stars of which our Milky Way is one among about two trillion.
In space or on the Moon there is no atmosphere to scatter light. The light from the sun travels a straight line without scattering and all the colors stay together. Looking toward the sun we thus see a brilliant white light while looking away we would see only the darkness of empty space.
Far outside our solar system and out past the distant reaches of our galaxy—in the vast nothingness of space—the distance between gas and dust particles grows, limiting their ability to transfer heat. Temperatures in these vacuous regions can plummet to about -455 degrees Fahrenheit (2.7 kelvin). Are you shivering yet?
No, you cannot hear any sounds in near-empty regions of space. Sound travels through the vibration of atoms and molecules in a medium (such as air or water). In space, where there is no air, sound has no way to travel.
If we add up all the light coming from galaxies (and the stars within them), and from all the clouds of gas and dust in the Universe, we'd end up with a colour very close to white, but actually a little bit 'beige'.
Scientists now consider it unlikely the universe has an end – a region where the galaxies stop or where there would be a barrier of some kind marking the end of space.
Short answer: We don't really know how the universe was created, though most astrophysicists believe it started with the Big Bang. We know that we live in an expanding universe. That means the entire universe is getting bigger with every passing day.
In about 100 trillion years, the last light will go out. The bad news is that the universe is going to die a slow, aching, miserable death. The good news is that we won't be around to see it.
When spacecraft, such as the space station and resupply vehicles, travel in low-Earth orbit, atomic oxygen can react with its surfaces, causing materials, such as polymers, to erode. In addition, radiation can cause spacecraft materials to become brittle and crack.
When looking out into the night sky with your own eyeballs, you don't see any beautiful nebulousness. Just the stars and the faint glow of the Milky Way. You might be able to see a few fuzzy bits, hint of nebulae, galaxies and star clusters.
Outer space is not completely empty; it is a near-perfect vacuum containing a low density of particles, predominantly a plasma of hydrogen and helium, as well as electromagnetic radiation, magnetic fields, neutrinos, dust, and cosmic rays.