Black holes have two parts. There is the event horizon, which you can think of as the surface, though it's simply the point where the gravity gets too strong for anything to escape. And then, at the center, is the singularity. That's the word we use to describe a point that is infinitely small and infinitely dense.
Most experts agree that the universe started as an infinitely hot and dense point called a singularity. Wait a minute. Isn't that what people call black holes? It is, in fact, and some physicists say they could be one and the same: The singularity in every black hole might give birth to a baby universe.
A jump into a black hole is a one-way trip. Black holes are regions of space where gravity is so strong that nothing can escape them, not even light. Even before you reach the event horizon – the point of no return – you would be “spaghettified” by the black hole's tidal forces.
Nothing escapes a black hole. Any trip into a black hole would be one way. The gravity is too strong and you could not go back in space and time to return home. Aside from this, your body would be stretched and destroyed by the warping of space and the amount of radiation surrounding the event horizon.
Near a black hole, the slowing of time is extreme. From the viewpoint of an observer outside the black hole, time stops. For example, an object falling into the hole would appear frozen in time at the edge of the hole.
One hour for a black hole observer would equate to 100,000,000 years for a person on Earth. Therefore one minute in a black hole would be roughly 1,700,000 years.
The inequality suggests that to destroy a black hole, all you need to do is to feed it angular momentum and charge. But that hides a multitude of problems. For a start, things with angular momentum and charge also tend to have mass. And in any case, the equation above describes a steady state.
At the center of a black hole the gravity is so strong that, according to general relativity, space-time becomes so extremely curved that ultimately the curvature becomes infinite. This results in space-time having a jagged edge, beyond which physics no longer exists -- the singularity.
The fate of anyone falling into a black hole would be a painful “spaghettification,” an idea popularized by Stephen Hawking in his book “A Brief History of Time.” In spaghettification, the intense gravity of the black hole would pull you apart, separating your bones, muscles, sinews and even molecules.
According to our best theory of gravity, Einstein's theory of general relativity, your spaghettified body would eventually end up at a 'singularity' – an infinitely small and dense point at the 'bottom' of the black hole.
Wormholes are shortcuts in spacetime, popular with science fiction authors and movie directors. They've never been seen, but according to Einstein's general theory of relativity, they might exist.
Located just under 1,600 light-years away, the discovery suggests there might be a sizable population of dormant black holes in binary systems. The black hole Gaia BH1, seen in this artist's concept near its Sun-like companion star, is the closest black hole to Earth discovered so far.
A white hole is a black hole running backwards in time. Just as black holes swallow things irretrievably, so also do white holes spit them out. White holes cannot exist, since they violate the second law of thermodynamics.
Absolutely not. While a black hole does have an immense gravitational field, they are only “dangerous” if you get very close to them.
Our universe is but one in an unimaginably massive ocean of universes called … the multiverse. If that concept isn't enough to get your head around, physics describes different kinds of multiverse. The easiest one to comprehend is called the cosmological multiverse.
Even though certain features of the universe seem to require the existence of a multiverse, nothing has been directly observed that suggests it actually exists. So far, the evidence supporting the idea of a multiverse is purely theoretical, and in some cases, philosophical.
Black holes are dark, dense regions in space where the pull of gravity is so strong that nothing can escape. Not even light can get out of these regions. That is why we cannot see black holes—they are invisible to our eyes. Because nothing can get out of black holes, physicists struggle understanding these objects.
It is thought that the matter that goes into a black hole gets crushed into a tiny point at the center called a "singularity". That's the only place that matter is, so if you were to fall into a black hole you wouldn't hit a surface as you would with a normal star. Once it's there, it's there.
There's nothing on the other side. Just disassembly and death. If you're looking for an escape to another dimension, might I suggest a good book instead? Here's an article I did about how to maximize your time while falling into a black hole.
There are no classes of object in our Universe more extreme than black holes. With so much mass present in such a tiny volume of space, they create a region around them where the curvature of space is so strong that nothing — not even light — can escape from its gravity once a certain boundary is crossed.
As black holes evaporate, they get smaller and smaller and their event horizons get uncomfortably close to the central singularities. In the final moments of black holes' lives, the gravity becomes too strong, and the black holes become too small, for us to properly describe them with our current knowledge.
In a new study, Stanford physicists Andrei Linde and Vitaly Vanchurin have calculated the number of all possible universes, coming up with an answer of 10^10^16.
So massive stars become neutron stars – the heaviest things in the universe – and even more massive stars become black holes.
It is possible for two black holes to collide. Once they come so close that they cannot escape each other's gravity, they will merge to become one bigger black hole.
For example, a black hole of 1 solar mass takes 1067 years to evaporate (much longer than the current age of the Universe), while a black hole of only 1011 kg will evaporate within 3 billion years. Black holes are detected by observing high-energy phenomena and the motions of nearby objects.