We might be the product of another, older universe. Call it our mother universe. The seed this mother universe forged inside a black hole may have had its big bounce 13.8 billion years ago, and even though our universe has been rapidly expanding ever since, we could still be hidden behind a black hole's
You would most likely not survive either a small or a large black hole. Remember, light cannot even escape a black hole–that is why it is called a black hole. From an outside perspective, time would slow down as you moved closer to the center of the black hole.
We might be the product of another, older universe. Call it our mother universe. The seed this mother universe forged inside a black hole may have had its big bounce 13.8 billion years ago, and even though our universe has been rapidly expanding ever since, we could still be hidden behind a black hole's event horizon.
Earth will not fall into a black hole because no black hole is close enough to the solar system for Earth to do that. Even if a black hole the same mass as the sun were to take the place of the sun, Earth still would not fall in.
Astronomers have discovered the closest black hole to Earth, the first unambiguous detection of a dormant stellar-mass black hole in the Milky Way. Its close proximity to Earth, a mere 1,600 light-years away, offers an intriguing target of study to advance understanding of the evolution of binary systems.
The resulting uninhabitable black hole would have such a powerful gravitational pull that not even light could avoid it. So, should you then find yourself at the event horizon — the point at which light and matter can only pass inward, as proposed by the German astronomer Karl Schwarzschild — there is no escape.
In pure general relativity, with no other modifications or considerations of other physics, they remain black for eternity. Once one forms, it will just hang out there, being a black hole, forever.
Although the odds of Earth getting swallowed by a black hole, or any Solar System planet, for that matter, are low, it's definitely a real possibility.
Fortunately, this has never happened to anyone — black holes are too far away to pull in any matter from our solar system. But scientists have observed black holes ripping stars apart, a process that releases a tremendous amount of energy.
Black holes, the gigantic remains of collapsed stars that are massive inescapable singularities of gravity, will eventually evaporate and fade into nothingness, something that Stephen Hawking predicted. But the same fate also awaits literally everything else, a recent study suggests.
It would take 10100 years, or a googol, for a supermassive black hole to fully disappear. “The entire age of the universe [is] a fraction of [the time] it would take,” says Priyamvada Natarajan, a researcher at Yale University who probes the nature of black holes. “As far as we're concerned, it is eternity.”
We have even found a possible way of using AdS/CFT to make quantum computers more reliable (see “Quantum corrections”). The fact is, however, that we still haven't arrived at a holographic description of the universe we see around us.
Cosmologists aren't sure if the universe is infinitely big or just extremely large. To measure the universe, astronomers instead look at its curvature. The geometric curve on large scales of the universe tells us about its overall shape. If the universe is perfectly geometrically flat, then it can be infinite.
Black hole news: Standing on edge of black hole would cause 700 years to pass in 1 minute.
When an unlucky victim falls into the event horizon of a black hole, they will survive for a finite amount of time. If you fall straight down into a stellar black hole, you'll last a fraction of a second. For a supermassive black hole, you might last a few hours.
Like part of a cosmic Russian doll, our universe may be nested inside a black hole that is itself part of a larger universe. In turn, all the black holes found so far in our universe—from the microscopic to the supermassive—may be doorways into alternate realities.
Nothing that falls into a black hole can come back out again -- at least not in its original form. But a black hole may lose some of its mass. Quantum theory says that "virtual pairs" of particles sometimes wink into existence from the fabric of space itself.
Black holes are some of the universe's most fascinating objects. Black holes are dark, dense regions in space where the pull of gravity is so strong that nothing can escape. Not even light can get out of these regions. That is why we cannot see black holes—they are invisible to our eyes.
The nearest known black hole is Gaia BH1, which was discovered in September 2022 by a team led by Kareem El-Badry. Gaia BH1 is 1,560 light-years away from Earth in the direction of the constellation Ophiuchus.
The ultimate fate of an open universe is either universal heat death, a "Big Freeze" (not to be confused with heat death, despite seemingly similar name interpretation ; see §Theories about the end of the universe below), or a "Big Rip" – in particular dark energy, quintessence, and the Big Rip scenario – where the ...
Astronomers have suspected that feedback, in the form of powerful radiation emitted by material swirling around a supermassive black hole at the center of a galaxy, can heat molecular gas in that galaxy and prevent it from collapsing to form stars. It could possibly even blow that gas out of a galaxy entirely.
The Sun would need to be about 20 times more massive to end its life as a black hole. Stars that are born this size or larger can explode into a supernova at the end of their lifetimes before collapsing back into a black hole, an object with a gravitational pull so strong that nothing, not even light, can escape.
It is possible for two black holes to collide. Once they come so close that they cannot escape each other's gravity, they will merge to become one bigger black hole. Such an event would be extremely violent. Even when simulating this event on powerful computers, we cannot fully understand it.
While researchers have never found a wormhole in our universe, scientists often see wormholes described in the solutions to important physics equations. Most prominently, the solutions to the equations behind Einstein's theory of space-time and general relativity include wormholes.
Beyond the event horizon lies a truly minuscule point called a singularity, where gravity is so intense that it infinitely curves space-time itself. This is where the laws of physics, as we know them, break down, meaning all theories about what lies beyond are just speculation.