No, because we could never even get the camera to the event horizon, never mind getting past the event horizon. As the camera approached the event horizon, it would become flattened, as observed by us at a distance.
But, the problem is that we can't get up close to see for ourselves. Why, we can't even take photographs of anything that takes place inside a black hole — if light cannot escape their immense gravity, then nothing can be snapped by a camera.
Once the camera goes in, it effectively disappears. Same thing for a wired camera: the cable is sundered and the camera is gone. No pictures can ever come back out of a black hole.
Astronomers have discovered the closest black hole to Earth, the first unambiguous detection of a dormant stellar-mass black hole in the Milky Way. Its close proximity to Earth, a mere 1,600 light-years away, offers an intriguing target of study to advance understanding of the evolution of binary systems.
The fate of anyone falling into a black hole would be a painful “spaghettification,” an idea popularized by Stephen Hawking in his book “A Brief History of Time.” In spaghettification, the intense gravity of the black hole would pull you apart, separating your bones, muscles, sinews and even molecules.
Near a black hole, the slowing of time is extreme. From the viewpoint of an observer outside the black hole, time stops. For example, an object falling into the hole would appear frozen in time at the edge of the hole.
"Black holes do not go around in space eating stars, moons and planets. Earth will not fall into a black hole because no black hole is close enough to the solar system for Earth to do that," NASA noted in 2018, adding that the sun isn't big enough to become a black hole.
When an unlucky victim falls into the event horizon of a black hole, they will survive for a finite amount of time. If you fall straight down into a stellar black hole, you'll last a fraction of a second. For a supermassive black hole, you might last a few hours.
Herein lies the reason for interstellar peace: black holes are not weaponized because to make them below nuclear density by conventional means requires a huge amount of mass, larger than a few times the mass of the Sun. It is an insurmountable engineering project to process such a large mass by technological means.
Black holes themselves cannot be seen: their gravitational fields are so strong that nothing can escape them—including light. That is why their edges are called event horizons, because, much like with normal horizons, seeing beyond them is impossible.
No human has ever been inside of a black hole. Humans are not yet capable of interstellar travel. Even if a human was able to travel to a black hole, he or she would not be able to survive entering it. Black holes condense all the matter that falls into it into one point called a quantum singularity.
on edge of Black Hole. Space and time are intertwined, called space-time, and gravity has the ability to stretch space-time. Objects with a large mass will be able to stretch space-time to the point where our perception of it changes, known as time dilation.
At the center of a black hole the gravity is so strong that, according to general relativity, space-time becomes so extremely curved that ultimately the curvature becomes infinite. This results in space-time having a jagged edge, beyond which physics no longer exists -- the singularity.
Black holes are dark, dense regions in space where the pull of gravity is so strong that nothing can escape. Not even light can get out of these regions. That is why we cannot see black holes—they are invisible to our eyes. Because nothing can get out of black holes, physicists struggle understanding these objects.
Despite their abundance, there is no reason to panic: black holes will not devour Earth nor the Universe. It is incredibly unlikely that Earth would ever fall into a black hole. This is because, at a distance, their gravitational pull is no more compelling than a star of the same mass.
As black holes evaporate, they get smaller and smaller and their event horizons get uncomfortably close to the central singularities. In the final moments of black holes' lives, the gravity becomes too strong, and the black holes become too small, for us to properly describe them with our current knowledge.
There's nothing on the other side.
A black hole has an infinite density; since its volume is zero, it is compressed to the very limit. So it also has infinite gravity, and sucks anything which is near it!
While researchers have never found a wormhole in our universe, scientists often see wormholes described in the solutions to important physics equations. Most prominently, the solutions to the equations behind Einstein's theory of space-time and general relativity include wormholes.
For all practical purposes the matter has disappeared from the universe. Once inside the black hole's event horizon, matter will be torn apart into its smallest subatomic components and eventually be squeezed into the singularity.
Is it possible for a black hole to "eat" an entire galaxy? No. There is no way a black hole would eat an entire galaxy. The gravitational reach of supermassive black holes contained in the middle of galaxies is large, but not nearly large enough for eating the whole galaxy.
Stellar black holes are very cold: they have a temperature of nearly absolute zero – which is zero Kelvin, or −273.15 degrees Celsius. Supermassive black holes are even colder. But a black hole's event horizon is incredibly hot. The gas being pulled rapidly into a black hole can reach millions of degrees.
It is possible for two black holes to collide. Once they come so close that they cannot escape each other's gravity, they will merge to become one bigger black hole. Such an event would be extremely violent.
Don't let the name fool you: a black hole is anything but empty space. Rather, it is a great amount of matter packed into a very small area - think of a star ten times more massive than the Sun squeezed into a sphere approximately the diameter of New York City.