Despite the name, not all black holes are black. While black holes come in many different sizes, the biggest ones are at the centres of galaxies, and are still growing in size. These “supermassive” black holes can have the mass of up to a billion Suns.
Rather, it emits a combination of all the radiation from all the objects that ever fell into it (which will asymptote to, but never reach, zero) along with the ultra-low-temperature but always-present Hawking radiation. You might have thought that black holes truly are black, but they aren't.
Black holes are near-perfect black bodies in the sense that they absorb all the radiation that falls on them. It has been proposed that they emit black-body radiation (called Hawking radiation) with a temperature that depends on the mass of the black hole. The term black body was introduced by Gustav Kirchhoff in 1860.
Since nothing can escape from the gravitational force of a black hole, it was long thought that black holes are impossible to destroy. But we now know that black holes actually evaporate, slowly returning their energy to the Universe.
A new model suggests how gravitational waves created by the collision between black holes spread and interact within the fabric of space-time. When black holes collide and merge to form even more massive black holes, this violent process sends ripples surging through the very fabric of space.
At the event horizon, the black hole's gravity is so powerful that no amount of mechanical force can overcome or counteract it. Even light, the fastest-moving thing in our universe, cannot escape – hence the term “black hole.”
No human has ever been inside of a black hole. Humans are not yet capable of interstellar travel. Even if a human was able to travel to a black hole, he or she would not be able to survive entering it. Black holes condense all the matter that falls into it into one point called a quantum singularity.
Near a black hole, the slowing of time is extreme. From the viewpoint of an observer outside the black hole, time stops. For example, an object falling into the hole would appear frozen in time at the edge of the hole.
Black holes have two parts. There is the event horizon, which you can think of as the surface, though it's simply the point where the gravity gets too strong for anything to escape. And then, at the center, is the singularity. That's the word we use to describe a point that is infinitely small and infinitely dense.
Well, even though black holes are extreme in many ways, they don't have infinite mass—and it's mass that determines the force of their gravity. Some black holes—known as stellar black holes. —have about the amount of mass that very massive stars do.
Stellar black holes are very cold: they have a temperature of nearly absolute zero – which is zero Kelvin, or −273.15 degrees Celsius. Supermassive black holes are even colder. But a black hole's event horizon is incredibly hot. The gas being pulled rapidly into a black hole can reach millions of degrees.
The frictional and gravitational interactions at play in the extreme space surrounding a black hole cause this material to heat up and shine brightly across a range of wavelengths. That's one source of a black hole's light.
White holes cannot exist, since they violate the second law of thermodynamics.
on edge of Black Hole. Space and time are intertwined, called space-time, and gravity has the ability to stretch space-time. Objects with a large mass will be able to stretch space-time to the point where our perception of it changes, known as time dilation.
Einstein's theory of general relativity mathematically predicts the existence of wormholes, but none have been discovered to date. A negative mass wormhole might be spotted by the way its gravity affects light that passes by.
As black holes evaporate, they get smaller and smaller and their event horizons get uncomfortably close to the central singularities. In the final moments of black holes' lives, the gravity becomes too strong, and the black holes become too small, for us to properly describe them with our current knowledge.
Is it possible for a black hole to "eat" an entire galaxy? No. There is no way a black hole would eat an entire galaxy. The gravitational reach of supermassive black holes contained in the middle of galaxies is large, but not nearly large enough for eating the whole galaxy.
Astronomers have discovered two new black holes that are the closest ones to Earth known, and also represent something that astronomers have never seen before. The black holes, designated Gaia BH1 and Gaia BH2, were discovered in data collected by the European Space Agency's (ESA) Gaia spacecraft.
Despite their abundance, there is no reason to panic: black holes will not devour Earth nor the Universe. It is incredibly unlikely that Earth would ever fall into a black hole. This is because, at a distance, their gravitational pull is no more compelling than a star of the same mass.
An atomic weapon probably would not function. If a bomb was detonated outside the event horizon, the disposition of high energy gases and radiation would depend on the exact orbital velocity and vector at that time. Some might escape, some might orbit and the rest would be sucked into the black hole.
A star has survived a close encounter with a black hole, but the black hole has been able to sneak a second bite. A captured star has experienced multiple close encounters with a supermassive black hole in a distant galaxy — and possibly even survived having material ripped away by immense gravitational tidal forces.
There are no classes of object in our Universe more extreme than black holes. With so much mass present in such a tiny volume of space, they create a region around them where the curvature of space is so strong that nothing — not even light — can escape from its gravity once a certain boundary is crossed.