In general, about 68% of the area under a normal distribution curve lies within one standard deviation of the mean. That is, if ˉx is the mean and σ is the standard deviation of the distribution, then 68% of the values fall in the range between (ˉx−σ) and (ˉx+σ) .
The 68-95-99 rule
It says: 68% of the population is within 1 standard deviation of the mean. 95% of the population is within 2 standard deviation of the mean. 99.7% of the population is within 3 standard deviation of the mean.
The rule states that (approximately): - 68% of the data points will fall within one standard deviation of the mean. - 95% of the data points will fall within two standard deviations of the mean. - 99.7% of the data points will fall within three standard deviations of the mean.
In statistics, the 68–95–99.7 rule, also known as the empirical rule, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.
Key Takeaways. The Empirical Rule states that 99.7% of data observed following a normal distribution lies within 3 standard deviations of the mean. Under this rule, 68% of the data falls within one standard deviation, 95% percent within two standard deviations, and 99.7% within three standard deviations from the mean.
Regardless of what a normal distribution looks like or how big or small the standard deviation is, approximately 68 percent of the observations (or 68 percent of the area under the curve) will always fall within two standard deviations (one above and one below) of the mean.
About 68% of the x values lie between –1σ and +1σ of the mean µ (within one standard deviation of the mean). About 95% of the x values lie between –2σ and +2σ of the mean µ (within two standard deviations of the mean).
68% of information values fall inside one standard deviation of the mean. 95% of information values fall inside two standard deviations of the mean. 99.7% of information values fall inside three standard deviations of the mean.
95% of the data in a data set will fall within two standard deviations of the mean (between -2sd and 2sd) 99.7% of the data in a data set will fall within three standard deviations of the mean (between -3sd and 3sd)
The empirical rule, or the 68-95-99.7 rule, tells you where your values lie: Around 68% of scores are within 1 standard deviation of the mean, Around 95% of scores are within 2 standard deviations of the mean, Around 99.7% of scores are within 3 standard deviations of the mean.
68% of values fall within 1 standard deviation of the mean (-1s <= X <= 1s) 90% of values fall within 1.65 standard deviations of the mean (-1.65s <= X <= 1.65s) 95% of values fall within 1.96 standard deviations of the mean (-1.96s <= X <= 1.96s)
For the standard normal distribution, 68% of the observations lie within 1 standard deviation of the mean; 95% lie within two standard deviation of the mean; and 99.9% lie within 3 standard deviations of the mean.
Thus, for the standard normal distribution, 68% of the observations lie within 1 standard deviation of the mean; 95% lie within two standard deviations of the mean; 99.7% lie within 3 standard deviations of the mean.
Answer and Explanation:
The empirical rule states that almost 99% of the data values of a normal distribution curve fall within the 3 standard deviations from the mean. So, in a normal distribution, 99 percent of the area under the curve is within three standard deviations of the mean.
This rule states that ~68% of the data falls within one standard deviation of the mean, ~95% of the data falls within two standard deviations of the mean, and ~99.7% falls within three standard deviations of the mean.
Since 95% of values fall within two standard deviations of the mean according to the 68-95-99.7 Rule, simply add and subtract two standard deviations from the mean in order to obtain the 95% confidence interval.
Approximately 68% of the data fall within one standard deviation of the mean. Approximately 95% of the data fall within two standard deviations of the mean. Approximately 99.7% of the data fall within three standard deviations of the mean.
Half of the 68 is between the mean in one standard deviation above the mean the other half of the 68% is between the mean in one standard deviation below the mean. According to the empirical rule 68% of the area under the normal curve is within one standard deviation of the mean.
About 68% of the x values lie between –1σ and +1σ of the mean μ (within one standard deviation of the mean). About 95% of the x values lie between –2σ and +2σ of the mean μ (within two standard deviations of the mean).
The empirical rule, or the 68-95-99.7 rule, tells you where most of the values lie in a normal distribution: Around 68% of values are within 1 standard deviation of the mean. Around 95% of values are within 2 standard deviations of the mean. Around 99.7% of values are within 3 standard deviations of the mean.
The Empirical Rule: Given a data set that is approximately normally distributed: Approximately 68% of the data is within one standard deviation of the mean. Approximately 95% of the data is within two standard deviations of the mean. Approximately 99.7% of the data is within three standard deviations of the mean.
The mean (the perpindicular line down the center of the curve) of the normaldistribution divides the curve in half, so that 50% of the area under the curveis to the right of the mean and 50% is to the left. Therefore, 50% of testscores are greater than the mean, and 50% of test scores are less than the mean.